Proof of concept in CML

STI-571

Gleevec is paradigm of targeted therapy

<u>Name</u>	<u>Target</u>	<u>Company</u>	<u>Class</u>							
Bevacuzimab	VEGF	Genentec	Monoclonal antibody							
Gefitinib	EGFR	Astra-Zeneca	Small molecule							
Sunitinib	Multi	Pfizer	Small molecule							
Trastuzimab (Herceptin)	Erb1/2	Genentech	Monoclonal antibody							
Dabrafenib	b-Raf	GSK	Small molecule							

PINK1 is localised to mitochondria in cells

Underpinnings of Parkinson's disease: Mitochondrial Dysfunction

Parkinson's disease & Mitochondria Timeline

1983: MPTP causes Parkinsonism in man Langston et al. Science

1985: MPTP is an inhibitor of complex I Nicklas et al. Life Sci

1989: Complex I activity is reduced in PD Schapira et al. Lancet

2000 Rotenone causes Parkinson's in rat

Betarbet et al., Nature Neurosci

Protein Phosphorylation and Dundee

The MRC Protein Phosphorylation Unit (Director: Sir Philip Cohen FRS, FRSE, FMedSci) is one of the world's leading centres studying the role of protein phosphorylation in cell regulation and human disease.

Its innovative collaboration with a number of major pharmaceutical companies has become a model for how Academic scientists should interact with industry, for which it won the Queen's anniversary prize in 2006.

The Sir James Black Centre where the MRC Unit is based

Understanding what PINK1 does will lead to the heart of PD mechanisms

NORMAL NEURONAL FUNCTION

PINK1 orthologues

Insect PINK1 is active in vitro

Helen Woodroof

PINK1 kinase activity is crucial to prevent Parkinsonism (1)

Outside kinase domain

Helen Woodroof

PINK1 kinase activity is crucial to prevent Parkinsonism (2)

Parkin

Mutations in Parkin discovered in PD patients in 1998

Commonest cause of familial early-onset PD

Functions as RING-HECT hybrid E3 ligase

Physiological substrate unknown

H.sapiens	39	DQ	L	R	٧	I	F	A	GI	Κ	E	L	R	Ν	DW	Т	V	Q	N	Ċ	DI		DC	٤C	S	I.	V	Η	T	V
M.musculus	39	DQ	L	R	۷	I	F	A	G	K	E	L	Р	N	ΗL	Т	۷	Q	Ν	Ċ	DI		ΞC	ĮΟ	S	I	۷	Η	1	V
R.norvegicus	39	DQ	L	R	۷	I	F	A	G	K	E	L	Q	N	ΗL	Т	V	Q	N	Ċ	DI		ΞC	ξĊ	S	I	V	Η	T	V
M.fascicularis	39	DQ	L	R	۷	I	F	A	G	K	E	L	R	N	DW	Т	V	Q	Ν	Ċ	DI		DC	۶C	S	I	V	Η	L	V
B.taurus	39	DQ	L	С	۷	I	F	A	G	K	E	L	R	N	DW	Т	V	Q	S	Ċ	DI		DC	ΣĮ	S	I	V	Η	T	V
G.gallus	45	DQ	L	R	۷	I	F	A	G	R	E	L	S	N	DL	Т	L	Q	N	Ċ	DI	١	/ C	ξĊ	S	I	V	Η	T	V
D.rerio	39	DQ	L	R	۷	I	F	A	G	R	E	L	C	N	ΕS	Т	L	Q	G	Ċ	DI	L F	P	C	S	Т	V	Η	V	V
D.melanogaster	68	DD	L	K		I	F	A	G	K	E	L	S	D	ΑT	Т		E	Q	Ċ	DI	0	5 C	ξC	S	V	L	Η	A	I
T.castaneum	54	GΕ	۷	K	L	I	F	A	G	K	E	L	G	D	ΝI	S	I	S	E	Ċ	DI		5 C	ξC	S	Т	L	Η	A	I
A.aegypti	68	GΕ	L	К	I		F	A	G	K	E	L	S	D	ΤI	Т		S	E	Ċ	DI	(5 C	ĮΟ	S	I		Η	A	V

Mammalian PINK1 becomes stabilised at the mitochondria following CCCP

PINK1 phosphorylation of Ser65 leads to active parkin

INACTIVE

'Closed'

ACTIVE

'Open'

PINK1 signaling pathway

Investigating the potential of p-Ser65-Parkin and p-Thr257-PINK1 as biomarkers

Cerebrospinal fluid drawn from between two vertebrae

Monoclonal antibodies under development

