Getting involved in Parkinson's disease

DEVELOPING AND EXPLOITING *C. ELEGANS* MODEL FOR PARKINSON'S DISEASE Supported by the PD society

Anton Gartner, Ph.D. University of Dundee

MSI/WTB Complex Gene Regulation and Expression DNA damage check-point pathway of C. elegans The University of Dundee Dow Street Dundee DD1 5EH United Kingdom Phone: +44 1382 385788 E-mail: p.ibanezcruceyra@dundee.ac.uk A. GARTNER lab's website http://www.dundee.ac.uk/biocentre/SLSBDIV3ag.htm

The long way to Dundee

Imp, Vienna, Austria

Cold Spring Harbor, New York

MPI, Munich, Germany

University of Dundee

Brief definition of Parkinson's Disease (PD)

-Human Parkinson's Disease genetics Human genetics

 Exploring C. elegans as a model for Parkinson's Disease

Why is it so difficult to give this talk

I have family members affected by neurodegenerative diseases

•Hope for a cure, follow up on internet and literature

 Why is it so difficult to find a cure against neurodegenerative disease as opposed to "say infectious diseases" eg. "antibiotics"

•Why is basic science so important and relevant to disease models even if these models do not appear to be directly connected to affected patients at the first glance.

Please bare in mind that I am not a medical doctor

Parkinson's Disease (PD): motor symptoms

ESSAY ON THE SHAKING PALSY.

CHAPTER I. DEFINITION-HISTORY-ILLUSTRATIVE CASES.

SHAKING PALSY. (Paralysis Agitans.) Involuntary tremulous motion, with lessened muscular power, in parts not in action and even when supported; with a propensity to bend the trunk forward, and to pass from a walking to a running pace: the senses and intellects being uninjured.

Clinical signs:

-resting tremor-bradykinesia-rigidity

Parkinson J. (1817) An essay on the shaking palsy, Sherwood, Neely and Jones, London

 Frequent neurodegenerative disease : 2% population > 65 years

No curative or preventive treatment

Effective symptomatic treatment (L-Dopa)

Largely unknown ethiology

Neuronal loss in the Substantia Nigra

Brissaud E. (1895) Leçons sur les Malades Nerveuses

Tretiakoff C. (1919) Thesis

Intracytoplasmic inclusions: Lewy Bodies

 Lewy Bodies are aggregates of: organelles proteins

Not present in all parkinsonian patients

Found in other neurodegenerative diseases:
Synucleinopathies (DLB, LBAD; MSA)

Dopaminergic death / L-dopa treatment

 Dopamine deficit in the striatum caused by the progressive and selective death of the dopaminergic neurons of the Substantia Nigra

Carlsson A (1959) Pharmacol. Rev.

Ehringer H & Hornykiewicz O (1960) Systems. Klin. Wochenschr. *Birkmayer W & Hornykiewicz O (1961)* Wien Klin. Wochenschr. **Fundamental Problem:**

How to prevent death of dopaminergic neurons?

we ideally want to take a system apart, see what is wrong fix it and reassemble again, eg broken car

Why is this so difficult for PD compared to infectious disease:

symptoms appear rather late

hard to determine what is cause and consequences

hard to identify molecules involved in PD Disease

hard to look into the brain of patients

hard to find model systems

How can we start to address what is wrong in PD disease? (taking advantage of rare disease variants)

Mutations in 6 genes cause Parkinson's Disease

Locus	Inheritance	Clinic	Onset age	Gene	Reference
PARK1	Dominant	± dementia	40s	α -SYNUCLEIN	Polymeropoulos 1997
PARK4	Dominant	a/typical	40/60	α -SYNUCLEIN	Singleton 2003
PARK5	Dominant	typical	50s	UCH-L1	Leroy 1998
PARK6	Recessive	Slow progression	30-40	PINK1	Valente 2004
PARK7	Recessive	Slow progression	30-40	DJ-1	Bonifati 2003
PARK8	Dominant	± dementia	60s	LRRK2	Paisan-Ruiz 2004
PARK9	Recessive	Kufor-Rakeb	12-14	ATP13A2	Ramirez 2006

How can we start to address what is wrong in PD disease? (taking advantage of rare disease variants)

- The Case of the Frozen Addicts: How the solution of an extraordinary medical mystery spawned a revolution in the understanding and treatment of Parkinson's disease
- By J. William Langston and Jon Palfreman. 309 pp. New York, Pantheon, 1996.
- •
- This book dramatically recounts the discovery of the cause of a local outbreak of sudden, severe parkinsonism in a group of young adults in northern California and how this discovery led to greater insight into Parkinson's disease. Langston is the Bay Area neurologist who reported the event and led a team of investigators to pinpoint the toxicant responsible for the acute loss of dopamine-containing neurons in the substantia nigra, causing the parkinsonism in these patients. The story unfolds and builds suspense as Langston and his colleagues determine that the toxicant is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP was the unwanted product resulting from

INTOXICATION

Toxins like MPTP and 6-OHDA are directly imported into dopaminergic neurons and cause their degeneration

Why do we use model organisms?

C. elegans worms as a model for Parkinsons disease?

Sydney Brenner John Sulston Bob Horvitz

Nobel Prices for medicine on "worm" research?

Life cycle of Caenorhabditis elegans

The newly hatched larva contains all somatic cells of the adult The gonads develop during the four larval stages L1 to L4

Why worms as a model system?

♦ Simple

- ***** Cheap to maintain and easy to propagate
- ***** Amenable to genetic analysis (hermaphrodites/males)
- ***** Short generation time
- Can be frozen away
- * Simple, invariant development
- * Complete wire diagram of the worm nervous system is available
- ***** Fully sequenced, more than 50% of worm genes have human homologs

C.ELEGANS AS A MODEL FOR DOPAMINERGIC DEGENERATION AND PARKINSON'S DISEASE

C. elegans: a relevant and useful model for PD

For studying the central nervous system:

more than 50% of mammalian genes have orthologs in *C. elegans*

many of the same neurotransmitters as in mammals 302 neurons (vs.1 000 000 000 000 in humans) all neuronal connections have been determined

For Parkinson's Disease:

similar dopamine metabolism conserved enzymes and transporters 8 dopaminergic neurons in hermaphrodites how does *C. elegans* PD look like?

• To mimic dopaminergic death:

conservation of genes involved in PD sensitivity and specificity of toxin

C. ELEGANS

Dendritic part of C. elegans dopaminegic neurons

Most human PD genes are conserved in C. elegans

Gene	C.elegans gene		Strain	Function
SNCA	not conserved, overe phenotype in worms	expression	none	unknown
PARKIN	pdr-1/K08E3.7		tm0598	E3 ligase
	ubh-1/F46E10.8	1.7e-30	tm0526	Libiauitia
UCHL1	ubh-3/Y40G12A.1		tm2550	bydroloco
	ubh-2/Y40G12A.2		tm0526	inyuiulase
PINK1	pink-1/EEED8.9		tm1779	Kinase
6 2	djr=1.1/B0432.2	3e-46	tm0918	Oxidative
	djr-1.2/C49G7.11	6e-35	tm1346	stress
LRRK2	Irk-1/T27C10.6	2.2e-67	tm1898	Kinase

BY200: a strain with GFP dopaminergic neurons

From McDonald PW, Jessen T, Field JR, Blakely RD (2006) Cell. Mol. Neurobiol.

assay dopaminergic degeneration

Nass et al. (2002) Proc. Natl. Acad. Sci. U S A

Mutations in the α -SYNUCLEIN Gene

Locus	Inheritance	Clinic	Onset age	Gene	Reference
PARK1	Dominant	± dementia	40s	α -SYNUCLEIN	Polymeropoulos 1997
PARK2	Recessive	Slow progression	20-40	PARKIN	Kitada 1998
PARK3	Dominant	typical	60s	?	Gasser 1998
PARK4	Dominant	a/typical	40/60	α -SYNUCLEIN	Singleton 2003
PARK5	Dominant	ty	NUNCT	UCH-L1	Leroy 1998
PARK6	Recessive	Slow pr		PINK1	Valente 2004
PARK7	Recessive	Slow pr	F. abo	DJ-1	Bonifati 2003
PARK8	Dominant	± de		LRRK2	Paisan-Ruiz 2004
PARK9	Recessive	Kufo	The state	ATP13A2	Ramirez 2006
PARK10	Dominant	ty		?	Hicks 2002
PARK11	Susceptibility	ty		?	Pankratz 2002
PARK12	Susceptibility	ty 🐞 📢	1 12	?	Pankratz 2002

TRIPLICATION – diffuse Lewy Body disease DUPLICATIONS – typical PD

Ibanez et al. (2004) Lancet

Nass and Blakely (2003) Annu. Rev. Pharmacol. Toxicol.

Studying PINK1 kinase in C.Elegans

PINK1: kinase genes pink-1(tm1779) *C.Elegans* strains

-are gene deletions in C.elegans associated with any phenotype?

-do these genes protect dopaminergic neurons?

No overt phenotype upon 6-OHDA intoxication

WT

200mM

PINK1-/-

6-OHDA

50mM

6-OHDA dose

20

0

0mM

preliminary results indicate no overt increase in 6-OHDA mediated neurodegeneration in pink-1(PINK1) and Irk-1 (LRRK2) knockouts

pink-1/lrk-1 strains have to be tested

Louise Chapman

Neurotoxic intoxication to reveal susceptibility

Challenge worms with dopaminergic neurotoxin regimes:

6-OHDA (Nass et al., 2002)

1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)

Rotenone

Paraquat

Look for factors (genes) that lead to enhanced or suppressed neurodegeneration

 Genetic screen for hypersensitivity to dopaminergic toxins

Screening for 6-OHDA Hypersensitivity or Resistance

Pdat-1::GFP worms mutagenesis

6-OHDA intoxication

Screen under low magnification fluorescence microscope for candidate mutants

Isolation, phenotype confirmation in subsequent generation and after back crosses

6-OHDA Resistance and Hypersensitivity Screens

	Resistant			Hypersensitive				
Dose (mM)	300	250	200	50	10	5	2.5	1.25
Intoxicated (~)	600	600	600	2153	2400	2400	2776	2608
Screened	4	-	103	1487	2216	2093	2052	1823
Phenotype	1	0	0	11	64	25	14	4
Confirmation	0	0	0	2	1	0	0	0

Positional Cloning By SNP Mapping

The gt1681 Mutant Is Hypersensitive to 6-OHDA (Loss of Dopaminergic Neurons)

Rescue of the tg1681 6-OHDA Hypersensitivity by a TSP-17 Encoding Fosmid

Alignment of *C.elegans tsp-17* with Orthologues

Where does TSP-17 act?

Evidence for TSP-17 acting in dopaminergic neurons

Neda Masoudi

Special Parkinson's Research Interest Group

Alexander Holms

Pablo Ibáñez

Alper Akay Ana Agostinho Aymeric Bailly Bettina Meier Ehsan Pourkarimi Rachael Rutkowski Remi Sonneville Bin Wang

> Wellcome Trust Cancer Research UK

D. Alessi N. Dzamko L. Chapman M. Deak J.M. Garcia-Martinez M. Muqit J. Nichols

Medical Research Council

Protein Phosphorylation Unit

tsp-17 is expressed in the dopaminergic neurons

Pdat-1:: yfp:: 3'let858

Ptsp-17:: tsp-17::cfp:: 3'tsp-17 merge

pdat-1:: mcherry:: 3'let858

ptsp-17:: tsp-17::gfp:: 3'tsp-17

Medical Research Council

Protein Phosphorylation Unit

Pablo Ibanez (funded by PD society) Neda Masoudi (funded by PD society) Alexander Holms (funded by PD society)

> Bailly S. Greiss

G. Mafioletti

B. Meier

S. Moser

R. Rutkowski

D. Alessi M. Muquit

L. Chapman