

September 20 - 23 2016

 Plenary Session: An update of brain circuits in Parkinson's and Deep Brain Stimulation

Deep Brain Stimulation Andres M Lozano, University of Toronto

- Deep brain stimulation is the delivery of an electrical current to an area of the brain - in PD bilateral to the subthalamic nucleus (STN)
- 150,000 PD patients have received it worldwide and currently 10,000 patients per year

Deep Brain Stimulation Andres M Lozano, University of Toronto

- Deep brain stimulation is the delivery of an electrical current to an area of the brain - in PD bilateral to the subthalamic nucleus (STN)
- 150,000 PD patients have received it worldwide and currently 10,000 patients per year
- Best Outcome Better quality of life with reduced motor fluctuations, tremor, rigidity, akinesia, gait and postural problems. Non-motor symptoms are resistant to surgery (Sleep problems, depression etc)

Deep Brain Stimulation Andres M Lozano, University of Toronto

MRI guided Focused Ultrasound (trans-skull penetration – i.e. <u>no surgery</u>) showed promising results in for essential tremor (n=40) (NEJM, 375,8 2016).

MRI guided Focused Ultrasound

Pretreatment

Post treatment

 Parallel Session: Disease modification - an update on clinical trials

aSyn vaccines, passive immunization and novel small molecules (Eliezer Masliah)

aSyn vaccine - active immunization

- **PD01A AFFITOPE** (small aSyn peptide) (Mandler, 2014)
 - tested in mouse models (Thy1.2-haSyn and pdgf-haSyn)
 - reduce cerebral aSyn
 - ameliorate neurodegeneration and dopaminergic loss in striatum
 - promote aSyn clearance by microglia
- Phase I trial in 12 PD patients showed vaccine to be safe
- 50% of patients developed aSyn antiboides in blood and CSF
- Phase IIA in PD and new trial in multiple system atrophy (MSA) patients.

aSyn vaccine - passive immunization

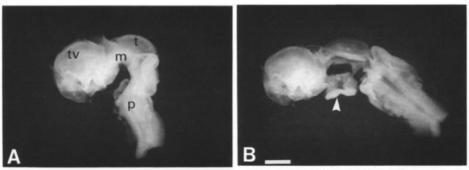
Prothena/Roche

- **PRX002 vaccine** humanized 9E4 antibody that recognises aSyn 118-126
- Phase 1A = 30 patients; Safe and well tolerated
- Reduced aSyn levels in plasma after 1 administration
- Phase 1B ongoing ascending dose in PD patients.

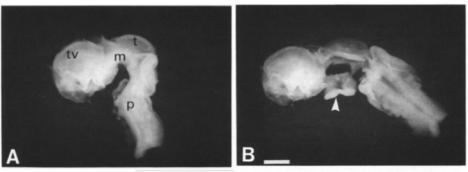
 Many reports from other groups on anti-aSyn antibodies protecting against dopamineric neurons loss

Small molecules against aSyn

Neuropore/UCB


- **NPT200-11 drug** similar to NPT100-18A
- NPT100-18A experiments (Price et al, Brain, 2016)
 - reduce aSyn oligomer formation
 - reduce reduced aSyn toxicity,
 - ameliorate behaviour (mThy1-haSyn mouse model)
- Phase I complete = 8 patients; Safe and well tolerated
- Phase II in planning stages

Clinical Trials with therapeutics against aSyn


Company	Drug	Preclinical efficacy	Preclinical PK/PD/ADM E	Phase I	Phase II
Prothena/Roc he	PRX002 passive a-syn immunization			\rightarrow	
AFFiRiS/MJF ox	PD-01A Active a-syn vaccine				
Neuropore/U CB	NPT200-11 a-syn stabilizer			\rightarrow	
Neurophage/ MJFx/others	Npt-088 Phage anti- fibrilation				
Neuroimmune /Biogen	passive a-syn immunization		~~?		

 Plenary Session Day 3 – Stem cells and iPS cells: where are we?

- Cell replacement of lost DA neurons in PD
- PAST Fetal transplants in PD patients variable results:
 - different doses of cells
 - different delivery method
 - different immunosupression
 - different primary end points

- Cell replacement of lost DA neurons in PD
- PAST Fetal transplants in PD patients variable results:
 - different doses of cells
 - different delivery method
 - different immunosupression
 - different primary end points

unilateral graft here

- Cell replacement of lost DA neurons in PD
- PAST Fetal transplants in PD patients variable results:
 - different doses of cells
 - different delivery method
 - different immunosupression
 - different primary end points

- PRESENT TRANSEURO using fetal grafts
 - better selection of patients (<65, <10 years duration, minimal LIDs)
 - same dose of cells, same delivery method,
 - same immunosupression, same 3 year end point (2020)

- About 16 transplants between May 2015
 September 2016
- At least 15 cancellations due to insufficient tissue

- FUTURE Stem cells (hESCs or iPSCs)
- avoid ethical and logistical issues
- controlled differentiation into a defined cell product
- dopaminergic neurons from hESCs have similar efficacy to fetal ventral midbrain transplants

- FUTURE Stem cells (hESCs or iPSCs)
- avoid ethical and logistical issues
- controlled differentiation into a defined cell product
- dopaminergic neurons from hESCs have similar efficacy to fetal ventral midbrain transplants
- GForce-PD = global initiative in coordinating stem cell-based treatments for PD.
- - CiRA iPSC in PD trial in 2017 (Japan)
- - NYSTEM trial hESC in PD in 2018 (USA)
- NeuroStemCellRepair hESC in PD in 2018/2019 (UK/Sweden)

June 2019