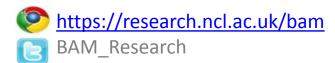
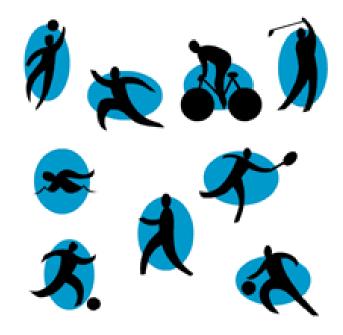


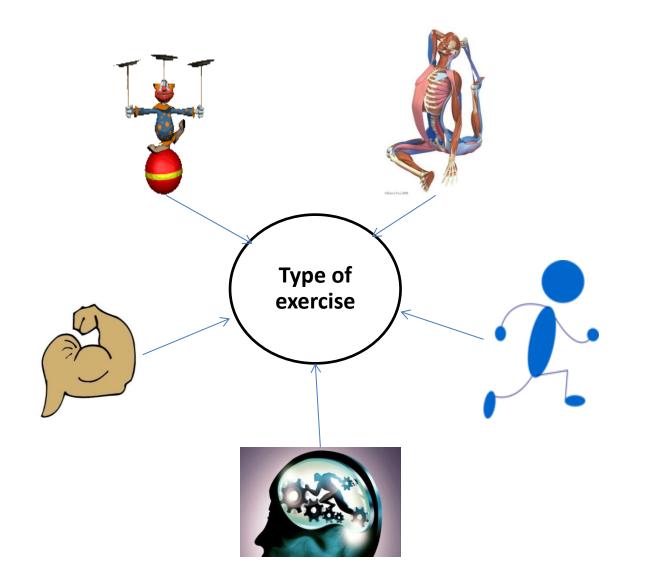
Institute of Neuroscience **NHS** National Institute for Health Research


Exercise in Parkinson's: Why bother?

Lynn Rochester

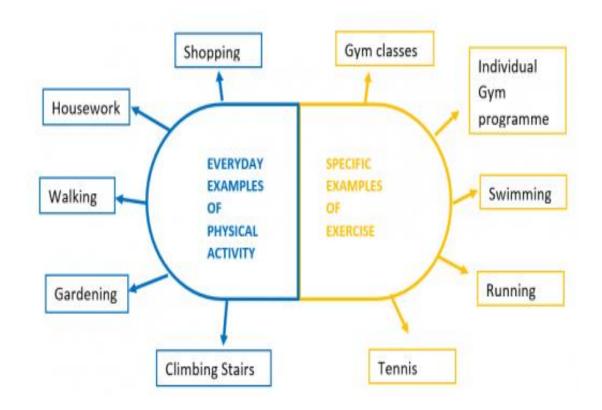

Lynn.Rochester@ncl.ac.uk Newcastle University

- What is exercise
- Why do it
- Convince me!
- What should I do
- When should I start

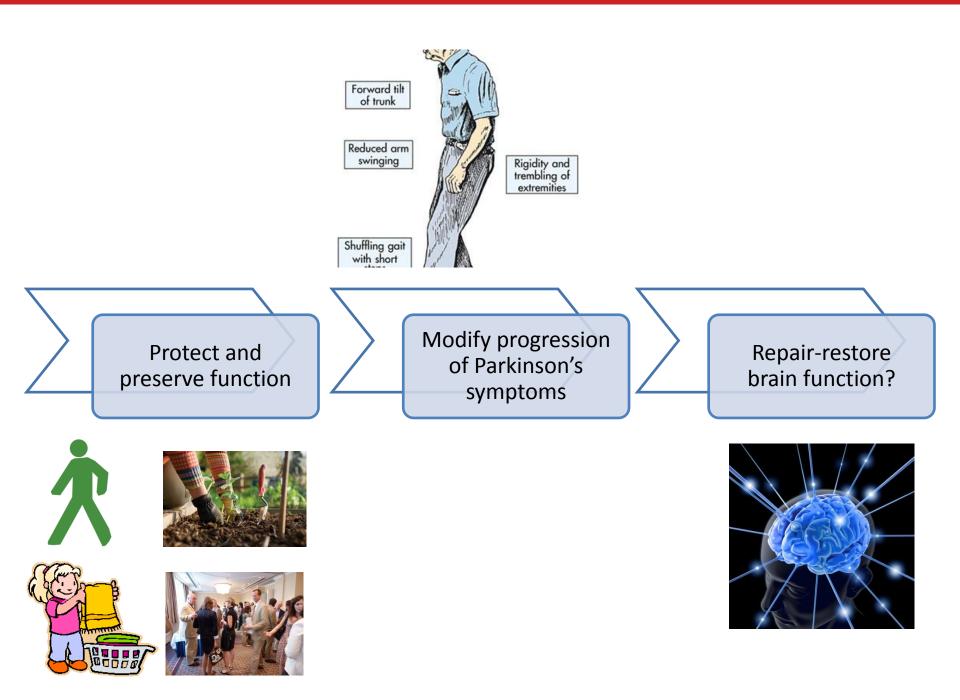

Definition of Exercise

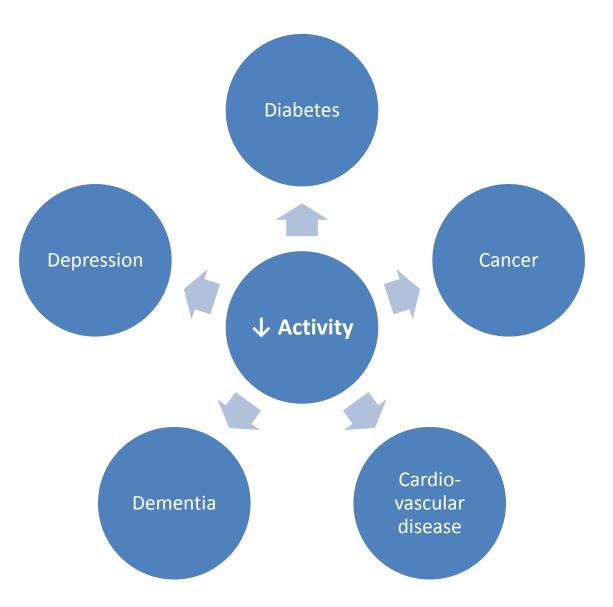
a physical activity that is

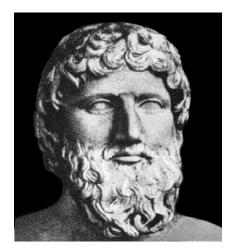
- <u>planned, structured and</u> <u>repetitive</u>
- goal of <u>increasing or</u> <u>maintaining physical fitness</u>
- purpose of <u>conditioning</u> <u>any part of the body</u>



A broad approach


Why exercise?





Activity in context of ageing

Lack of activity destroys the good condition of every human being, while movement and methodical physical exercise <u>save</u> it and <u>preserve</u> it

Convince me!

Whats the evidence?

Gait

- Exercise (strength, endurance) + compensatory strategies^{1, 2, 3, 4}
- Gait speed, endurance, FOG
- Clinical benefits¹
- Effective on and off medication ⁵
- Cost effective?

¹Tomlinson et al., 2012; ²Shulman et al., 2013; ³Morris et al., 2015; ⁴ Uc et al., 2014; ⁵ Rochester et al., 2010; Spaulding et al., 2012

Balance

• Balance & strength key components

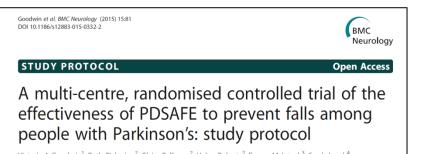
Tomlinson et al., 2012; Allen et al., 2011; Li et al., 2012

OPEN access Freely available online

Tai Chi for Improvement of Motor Function, Balance and Gait in Parkinson's Disease: A Systematic Review and Meta-Analysis

Yan Yang*, Xiang-Yuan Li, Li Gong, Yun-Liang Zhu, Yan-Lei Hao

	1	ai Chi		C	ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Balance									
Zhu 2011	4	3.81	19	0.64	3.91	19	21.7%	0.85 [0.18, 1.52]	
Li 2011	5.78	4.98	24	0.16	4.97	23	24.3%	1.11 [0.49, 1.73]	
Li 2012	5	6.9	65	1.1	7.57	130	54.1%	0.53 [0.23, 0.83]	
Subtotal (95% CI)			108			172	100.0%	0.74 [0.38, 1.10]	•
Heterogeneity: Tau ² =	0.04; C	hi ² = 3.0	18, df =	2 (P = 0	.21); 2=	: 35%			
Test for overall effect				20	124				
1.1.2 Gait velocity									_
Li 2012	10.5	23.28	65	2.7	25.5	130	89.3%	0.31 [0.01, 0.61]	-
Amano 2013	0.01	0.2	12	0.04	0.32	9	10.7%	-0.11 [-0.98, 0.75]	
Subtotal (95% CI)			77			139	100.0%	0.27 [-0.01, 0.55]	•
Heterogeneity: Tau ² =	0.00; C	hi ² = 0.8	3, df =	1 (P = 0)	.36); 2 =	: 0%			
Test for overall effect:	Z=1.86	(P = 0.	06)						
1.1.3 Step length									1.000
Li 2012	10.3	21.91	65	1.1	21.66	130	75.4%	0.42 [0.12, 0.72]	
Amano 2013	-0.01	0.08	12	0.01	0.16	9	24.6%	-0.16 [-1.03, 0.71]	
Subtotal (95% CI)			77			139	100.0%	0.28 [-0.21, 0.77]	-
Heterogeneity: Tau ² =	0.06; C	hi ² = 1.5	4. df =	1 (P = 0)	.21); 2=	: 35%			
Test for overall effect:									
	-	v							
									7 7 F F F F F F F F F F F F F F F F F F


Yang et al., 2015

Falls

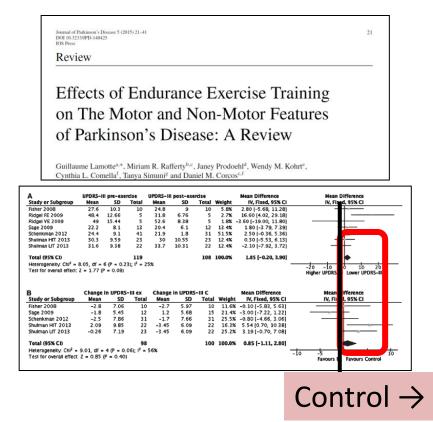
Study	N	Intervention	Dose	Duration (weeks)	Supervision	Sig
Goodwin (2011)	130	Balance & strengthControl	1x week group 2x home	10	33%	X
Li (2012)	195	Tai ChiStrengthStretching	2x week group	24	100%	√
Morris (2015)	210	StrengthMovement StrategiesControl	1x week group 1x home	8	50%	\checkmark
Canning (2015)	231	 Balance, strength, cueing Control 	1x month group 3x week home	26	13%	X
	igth & t binatior	balance & movement stra n best?		 BUT! Low disease High disease Cost effective & cost saving (Farag et al., 2014) 		

Falls: One size does not fit all

Recommendations for intervention depend on severity

Victoria A Goodwin¹, Ruth Pickering², Claire Ballinger², Helen Roberts², Emma McIntosh³, Sarah Lamb⁴, Alice Nieuwboer⁵, Lynn Rochester⁶, Ann Ashburn^{2*} and on behalf of the PDSAFE Protocol Development Group

Physical capacity



- Maintain & prevent deconditioning
- Improves fitness (VO₂ max; endurance)^{1,2,3}
- Low intensity as effective ^{1,2}

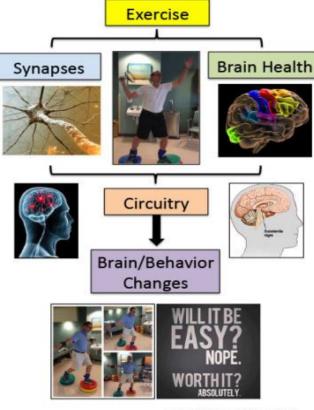
¹Shulman et al., 2012; ²Uc et al., 2014; ³Schenkman et al., 2012

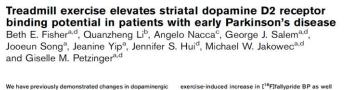
Motor symptoms

- type of intervention?
- combination optimal

Lamotte et al., 2015; Uhrbrand et al., 2015

Tomlinson et al., 2012

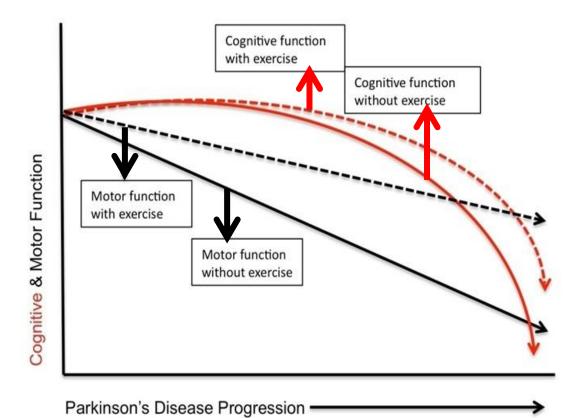

Cognition and mood?



- Limited evidence
- Executive function & attention
- Type of intervention?

Exercise and Neuroplasticity in Parkinson's

Drawing idea partly based on FIG 3 from Petzinger et al. (2013)



We have previously demonstrated changes in dopaminergic neurotransmission after intensive exercise in the 1-methyl-4-phenyl-1,2,3.6-tetrahydropyridine-lesioned mouse model of Parkinson's disease (PD). Including an increase in the dopamine D₂ receptor (DA-D₂R), using noninvasive PET imaging with the radioligand 1¹⁸F]fallypride. The purpose of this feasibility and translational study was to examine whether intensive exercise leads to similar afterations in DA-DR expression using PET imaging with 1¹⁸F]fallypride in individuals with endv-stage PD. In this pilot study, four patients with exercise-induced increase in [1⁴⁸FIdlypride BP as well as improved postural control in patients with PO who exercised. Changes in DA-D₂R BP were not observed in patients with PO who did not exercise. These results suggest that exercise can lead to neuroplasticity in dopaminergic signaling and contribute to improved function that may be task specific (postural control) in early-stage PD. NeuroReport 24:509-514 © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.

NeuroReport 2013, 24:509-514

- Emerging evidence
- Paves the way for future neuro-protection trials?

One intervention: Twice the benefit

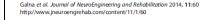
Games to do you good Neuroscientists should help to develop compelling video games that boost brain function and improve well-being, say Daphne Bavelier and Richard J. Davidson.

Nature. 2013

Complex cognitive-motor training

Minelman et al. BMC Neurology 2013, 13:15 http://www.biomedcentral.com/1471-2377/13/15

(BMC Neurology


STUDY PROTOCOL

Open Access

V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial

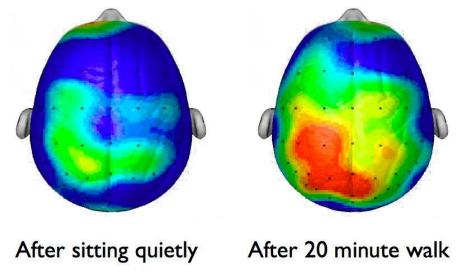
Anat Mielman^{1,2,47}, Lynn Rochester³, Miriam Reelck⁴, Freek Nieuwhof⁴, Elisa Pelosin⁵, Giovanni Abbruzzese⁵, Kim Dodo⁶, Alice Nieuwboe⁶ and Jeffrey M Hausdorff^{1,2,6}

Open Access

METHODOLOGY

Retraining function in people with Parkinson's disease using the Microsoft kinect: game design and pilot testing

Brook Galna¹, Dan Jackson², Guy Schofield², Roisin McNaney², Mary Webster², Gillian Barry¹, Dadirayi Mhiripiri¹, Madeline Balaam², Patrick Olivier² and Lynn Rochester^{1*}



If that doesn't convince you!

Composite of 20 student brains taking the same test

Research/Scan compliments of Dr. Chuck Hillman University of Illinois

What should I do?

Barriers to exercise

Ellis et al., 2013

How to get started?

- Local groups
- Buddy
- Physio
- Personal trainer
- Diary
- Start small and build up

Adherence and implementation

BMJ

BMJ 2013;346:f576 doi: 10.1136/bmj.f576 (Published 1 March 2013)

Page 1 of 11

RESEARCH

Promotion of physical activity and fitness in sedentary patients with Parkinson's disease: randomised controlled trial

OPEN ACCESS

Marlies van Nimwegen physiotherapist and research scientist¹, Arlène D Speelman physiotherapist and research scientist¹, Sebastiaan Overeem research scientist², Bart P van de Warrenburg medical doctor² Katriin Smulders research scientist²³ Manon I. Dontie research scientist⁵⁵ George F Borr

Target self-efficacy Behavioural change

• 12% increase activity using accelerometer

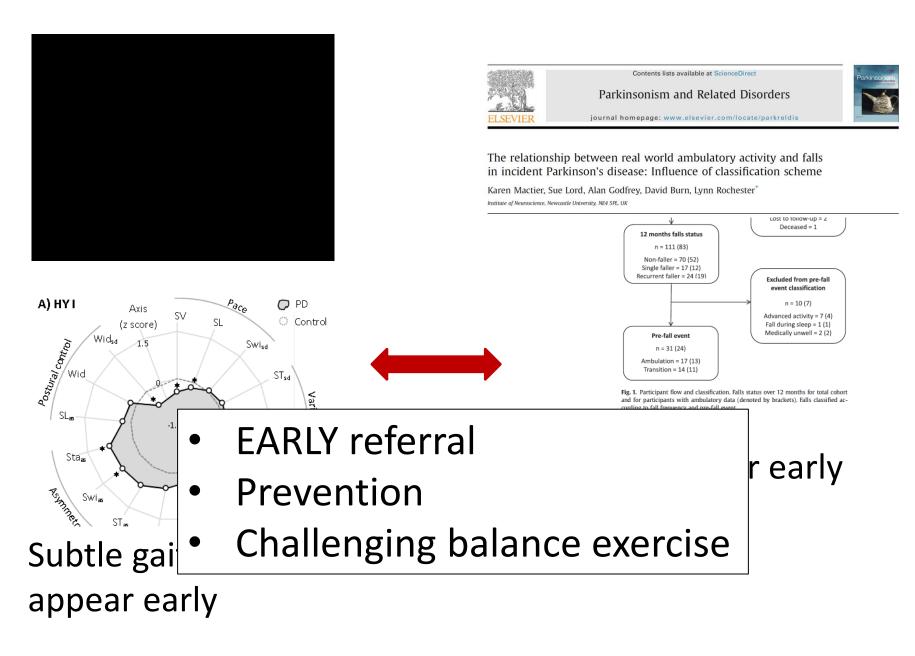
What should I do?

	Domain	Traditional Examples	Other examples
	Strength	Weight training Resistance exercise	Gardening Computer games
СООКВООК	Endurance	Treadmill Bike Walking at pace Swimming	Dancing Computer games
	Balance & co-ordination	Home exercises	Tai Chi Gardening Dancing Computer games
	Flexibility	Stretching Home exercises	Yoga Pilates Computer games

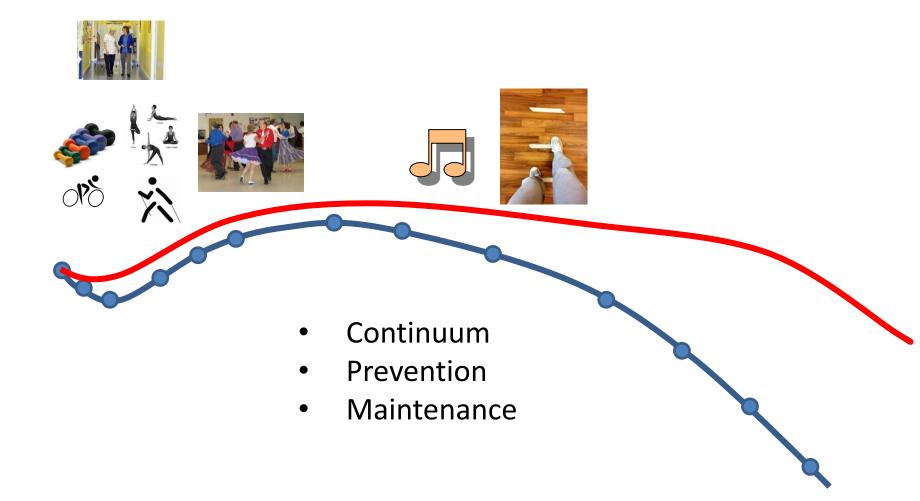
When should I start?

J Neurol DOI 10.1007/s00415-013-7037-5

ORIGINAL COMMUNICATION


Ambulatory activity in incident Parkinson's: more than meets the eye?

Sue Lord • Alan Godfrey • Brook Galna • Dadirayi Mhiripiri • David Burn • Lynn Rochester


Inactivity and PD

Galna et al., 2015

- What is exercise
- Why do it
- Convince me!

- Anything to get you moving
- -----> Multiple benefits
- → Research supports it
- What should I do ——> Something you like
- When should I start Now

Acknowledgements

Brain and Movement Research Group:

- Lynn Rochester
- Sue Lord
- Brook Galna
- Alan Godfrey
- Silvia Del-Din
- Lisa Alcock
- Carol Shields
- Aodhán Hickey

- Sam Stuart
- Rosie Morris
- Riona McArdle
- Heather Hunter
- Philip Brown
- Annette Pantall
- Collaborators: Professor David Burn Alison Yarnall Gillian Barry

UK NIHR Biomedical Research Unit for Lewy Body Dementia award to the Newcastle upon Tyne Hospitals NHS Foundation Trust

Newcastle Biomedical Research Centre & Unit