

Parkinsonian Gait – where the journey begins and where should we take it.

Julie Jones

Who am I?

PARKINSON'S^{UK} CHANGE ATTITUDES. FIND A CURE. JOIN US.

What I am aim to cover.

• Pathogenesis of PD gait.

• The role of Physiotherapy in the management of gait.

Current research opinion of the management of gait.

The normal gait cycle

Pathogenesis of PD and the relationship to walking

Pathogenesis

Lewy Bodies

© R&D Systems, Inc.

The Basal Ganglia

Caudate and Putamen

Caudate nucleus Rostral putamen Caudal putamen

Speed & accuracy

Body & limb position/posture

Linked with sleep & social behaviour

Motor preparation

Sequencing, & amplitude

Learning

What happens in PD

The Basal Ganglia

Caudate and Putamen

Motor Cortex

ROBERT GORDON UNIVERSITY ABERDEEN

Net effect in the CNS

Alteration in selectivity, and force generation

Reduction in control of individual muscles

Reduction in speed, and amplitude of movement

Alteration in sequencing of movement

Reduction in background preparation of movement

Behavioural context of movement

Well learnt movements are affected

Net effect in the periphery

More recently

- α-Synuclein is linked neuropathologically to PD
- PNS is a target for α-Synuclein deposition
 - loss of dermal nerve fibres
 - loss of Meissners corpuscles

Sensory disturbance

Motor Cortex

ROBERT GORDON UNIVERSITY ABERDEEN

So how does this impact on walking?

Walking

Key messages for therapists

Primary Issues:

- Amplitude of movement
- Speed and accuracy
- Regulation and sequencing of movement
- Proprioceptive
- Set shifting
- Motor learning
- Motivational

Secondary Issues:

- Strength and power
- Speed
- Posture and balance
- Biomechanics
- Endurance
- ROM
- Routine & non routine
- Skills acquisition
- Empowerment
- Education

Components of gait training

What is the evidence?

Value of exercise in PD (Fox et al 2006)

Intensive activity maximises synaptic plasticity

Complex activities promote greater structural adaptation

Rewarding activities increase dopamine levels & promote learning

Dopaminergic neurones are highly responsive to exercise and inactivity

Early initiation of exercise and slow down progression

Physiotherapy

PD Rehab

Clarke et al (2016)

Exercise SRs focussing on gait

Author and Year	Title
Allen et al 2010	The effects of an exercise program on fall risk factors in people with Parkinson's disease
Combs et al 2013	Community-based group exercise for persons with Parkinson's disease: A randomized controlled trial
Hass et al 2012	Progressive resistance training improves gait initiation in individuals with Parkinson's disease
Paul et al 2014	Leg muscle power is enhanced by training in people with Parkinson's disease: a randomized controlled trial
Schilling et al 2010	Effects of moderate-volume, high-load lower body resistance training on strength and function in persons with Parkinson's disease: a pilot study
Shen & Mak 2012	Repetitive step training with preparatory signals improves stability limits in patients with Parkinson's disease
Shulman et al 2013	Randomized clinical trial of 3 types of physical exercise for patients with Parkinson's disease

Outcome measures included

Author & Year	TUG	6 MWT	10 MWT	2.5/5m walking velocity	Stride Length	Initial Stride Velocity	Cadence	FOG Question Yes/No	FOG Question- naire
Allen et al 2010				✓				✓	$\checkmark\checkmark$
Combs et al 2013	$\checkmark\checkmark$	\bigwedge		$\checkmark\checkmark$					
Hass et al 2012					$\checkmark\checkmark$	$\checkmark\checkmark$			
Paul et al 2014	\checkmark		\checkmark						
Schilling et al 2010	\checkmark	V V							
Shen & Mak 2012				$\checkmark\checkmark$	\checkmark		\checkmark		
Shulman et al 2013			\checkmark						

Conclusions

Longer duration and functional based exercises Allen et al 2010

Functional based exercises Speed and motor planning components. Combs et al 2013

Power training sig. improvement over low intensity training. No imp on gait or fall. Paul et al 2014

Functional & high resistance 2-3 weekly Combined approach Strength increased by 25%. No improvement in walking, or skill acquisition. Schilling et al 2010

Balance V strength. Balance had LT impact on SL & velocity. Shen and Mak 2014

HI TT and LI TT improvements in CV fitness and gait speed. No impact on strength. Schulma et al 2013

PRT group significantly improved initial stride length, gait initiation and gait velocity. No functional improvement. Hass et al 2012

Cueing

Rocha et al (2014)

- Cueing results in improvements in Stride length, step length, speed, and cadence.
- Visual provide better improvement in cadence
- Sensory cues decrease cadence, but increase speed and stride length
- Combined cueing with auditory and visual also show improvements in the UPDRS and freezing

Issues

Tai Chi Yang et al (2014)

- Supports the efficacy of Tai Chi in particular motor function, balance.
- Little benefit on walking, aerobic capacity, and muscle strength
- Functionally beneficial

Treadmill Training Mehrholz et al 2015

- 18 trials with sample of 633 PwPD
- Improvements in gait speed, and SL
- No improvement in walking distance and cadence
- ? Long term improvement, optimal freq and intensity
- Low to moderate quality evidence

LSVT Big

LSVT Big Ebersbach et al 2010

- 3 groups –BIG, Nordic Walking, & U/S Exercise
- 16 hours of training within 4-8 weeks
- UPDRS Motor scale used
- Improvements made in BIG in UPDRS, TUG and 10MWT
- No changes on QoL

Where does this leave us now?

What type exercise is best?

When should PwPD begin exercising?

At what prescription?

Combined approach would seem best but which forms of exercise?

Does current therapy address the complexity of the condition?

How long will do the benefits last?

So where does this leave us?

We know that improvements can be made in:

- Strength
- Power
- Flexibility
- Balance
- Gait

What we don't know:

- Which type of exercise would be best?
- Combined approach would seem best but which forms of exercise?
- At what prescription?
- How long will it last?

ParkFit (Speelman et al 2014)

The Future

How can we do it

Working in partnership

Thank you

j.c.jones@rgu.ac.uk